Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 9.486
1.
Physiol Rep ; 12(9): e16032, 2024 May.
Article En | MEDLINE | ID: mdl-38720166

INPP4A has been shown to be involved in the regulation of cell proliferation and apoptosis of multiple cell types including fibroblasts. Previous reports from our group have demonstrated the role of inositol polyphosphate 4-phosphatase Type I A (INPP4A) in these functions. Though existing evidences suggest a critical role for INPP4A in the maintenance of lung homeostasis, its role in chronic lung diseases is relatively under explored. In the current study, we made an attempt to understand the regulation of INPP4A in idiopathic pulmonary fibrosis (IPF). Through integration of relevant INPP4A gene expression data from public repositories with our results from in vitro experiments and mouse models, we show that INPP4A is altered in IPF. Interestingly, the direction of the change is dependent both on the disease stage and the region of the lung used. INPP4A was found to be upregulated when analyzed in lung sample representative of the whole lung, but was downregulated in the fibrotic regions of the lung. Similarly, INPP4A was found to be high, compared to controls, only in the early stage of the disease. Though the observed increase in INPP4A was found to be negatively correlated to physiological indices, FVC, and DLCO, of lung function, treatment with anti-INPP4A antibody worsened the condition in bleomycin treated mice. These contrasting results taken together are suggestive of a nuanced regulation of INPP4A in IPF which is dependent on the disease stage, cellular state and extent of fibrosis in the lung region being analyzed.


Idiopathic Pulmonary Fibrosis , Phosphoric Monoester Hydrolases , Idiopathic Pulmonary Fibrosis/metabolism , Idiopathic Pulmonary Fibrosis/pathology , Idiopathic Pulmonary Fibrosis/genetics , Animals , Humans , Phosphoric Monoester Hydrolases/metabolism , Phosphoric Monoester Hydrolases/genetics , Mice , Lung/metabolism , Lung/pathology , Male , Mice, Inbred C57BL , Fibroblasts/metabolism , Female
2.
Protein Sci ; 33(6): e5009, 2024 Jun.
Article En | MEDLINE | ID: mdl-38747379

PHPT1 is a histidine phosphatase that modulates signaling in eukaryotes through its catalytic activity. Here, we present an analysis of the structure and dynamics of PHPT1 through a combination of solution NMR, molecular dynamics, and biochemical experiments. We identify a salt bridge formed between the R78 guanidinium moiety and the C-terminal carboxyl group on Y125 that is critical for ligand binding. Disruption of the salt bridge by appending a glycine residue at the C-terminus (G126) leads to a decrease in catalytic activity and binding affinity for the pseudo substrate, para-nitrophenylphosphate (pNPP), as well as the active site inhibitor, phenylphosphonic acid (PPA). We show through NMR chemical shift, 15N relaxation measurements, and analysis of molecular dynamics trajectories, that removal of this salt bridge results in an active site that is altered both structurally and dynamically thereby significantly impacting enzymatic function and confirming the importance of this electrostatic interaction.


Catalytic Domain , Molecular Dynamics Simulation , Substrate Specificity , Nuclear Magnetic Resonance, Biomolecular , Phosphoric Monoester Hydrolases/chemistry , Phosphoric Monoester Hydrolases/metabolism , Humans
3.
Int J Mol Sci ; 25(9)2024 May 04.
Article En | MEDLINE | ID: mdl-38732240

Methicillin-resistant Staphylococcus aureus (MRSA) infection has rapidly spread through various routes. A genomic analysis of clinical MRSA samples revealed an unknown protein, Sav2152, predicted to be a haloacid dehalogenase (HAD)-like hydrolase, making it a potential candidate for a novel drug target. In this study, we determined the crystal structure of Sav2152, which consists of a C2-type cap domain and a core domain. The core domain contains four motifs involved in phosphatase activity that depend on the presence of Mg2+ ions. Specifically, residues D10, D12, and D233, which closely correspond to key residues in structurally homolog proteins, are responsible for binding to the metal ion and are known to play critical roles in phosphatase activity. Our findings indicate that the Mg2+ ion known to stabilize local regions surrounding it, however, paradoxically, destabilizes the local region. Through mutant screening, we identified D10 and D12 as crucial residues for metal binding and maintaining structural stability via various uncharacterized intra-protein interactions, respectively. Substituting D10 with Ala effectively prevents the interaction with Mg2+ ions. The mutation of D12 disrupts important structural associations mediated by D12, leading to a decrease in the stability of Sav2152 and an enhancement in binding affinity to Mg2+ ions. Additionally, our study revealed that D237 can replace D12 and retain phosphatase activity. In summary, our work uncovers the novel role of metal ions in HAD-like phosphatase activity.


Bacterial Proteins , Hydrolases , Magnesium , Phosphoric Monoester Hydrolases , Magnesium/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Phosphoric Monoester Hydrolases/metabolism , Phosphoric Monoester Hydrolases/chemistry , Phosphoric Monoester Hydrolases/genetics , Hydrolases/metabolism , Hydrolases/chemistry , Hydrolases/genetics , Models, Molecular , Methicillin-Resistant Staphylococcus aureus/enzymology , Methicillin-Resistant Staphylococcus aureus/genetics , Staphylococcus aureus/enzymology , Crystallography, X-Ray , Protein Binding
4.
Physiol Plant ; 176(3): e14341, 2024.
Article En | MEDLINE | ID: mdl-38741264

Symbiotic nitrogen fixation (SNF) is crucial for legumes, providing them with the nitrogen necessary for plant growth and development. Nodulation is the first step in the establishment of SNF. However, the determinant genes in soybean nodulation and the understanding of the underlying molecular mechanisms governing nodulation are still limited. Herein, we identified a phosphatase, GmPP2C61A, which was specifically induced by rhizobia inoculation. Using transgenic hairy roots harboring GmPP2C61A::GUS, we showed that GmPP2C61A was mainly induced in epidermal cells following rhizobia inoculation. Functional analysis revealed that knockdown or knock-out of GmPP2C61A significantly reduced the number of nodules, while overexpression of GmPP2C61A promoted nodule formation. Additionally, GmPP2C61A protein was mainly localized in the cytoplasm and exhibited conserved phosphatase activity in vitro. Our findings suggest that phosphatase GmPP2C61A serves as a critical regulator in soybean nodulation, highlighting its potential significance in enhancing symbiotic nitrogen fixation.


Gene Expression Regulation, Plant , Glycine max , Nitrogen Fixation , Plant Proteins , Plant Root Nodulation , Symbiosis , Glycine max/genetics , Glycine max/microbiology , Glycine max/physiology , Plant Root Nodulation/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Symbiosis/genetics , Rhizobium/physiology , Root Nodules, Plant/genetics , Root Nodules, Plant/microbiology , Root Nodules, Plant/metabolism , Plants, Genetically Modified , Phosphoric Monoester Hydrolases/metabolism , Phosphoric Monoester Hydrolases/genetics , Plant Roots/genetics , Plant Roots/microbiology , Plant Roots/metabolism
5.
Endocr Regul ; 58(1): 91-100, 2024 Jan 01.
Article En | MEDLINE | ID: mdl-38656254

Objective. Glucose and glutamine supply as well as serine synthesis and endoplasmic reticulum (ER) stress are important factors of glioblastoma growth. Previous studies showed that the knockdown of ERN1 (ER to nucleus signaling 1) suppressed glioblastoma cell proliferation and modified the sensitivity of numerous gene expressions to nutrient deprivations. The present study is aimed to investigate the impact of glucose and glutamine deprivations on the expression of serine synthesis genes in U87MG glioblastoma cells in relation to ERN1 knockdown with the intent to reveal the role of ERN1 signaling pathway on the ER stress-dependent regulation of these gene expressions. Clarification of the regulatory mechanisms of serine synthesis is a great significance for glioblastoma therapy. Methods. The control U87MG glioblastoma cells (transfected by empty vector) and ERN1 knockdown cells (transfected by dominant-negative ERN1) were exposed under glucose and glutamine deprivation conditions for 16 h. RNA was extracted from cells and reverse transcribed. The expression level of PHGDH (phosphoglycerate dehydrogenase), PSAT1 (phosphoserine amino-transferase 1), PSPH (phosphoserine phosphatase), ATF4 (activating transcription factor 4), and SHMT1 (serine hydroxymethyltransferase 1) genes was studied by real-time qPCR and normalized to ACTB. Results. It was found that the expression level of genes responsible for serine synthesis such as PHGDH, PSAT1, PSPH, and transcription factor ATF4 was up-regulated in U87MG glioblastoma cells under glucose and glutamine deprivations. Furthermore, inhibition of ERN1 significantly enhances the impact of glucose and especially glutamine deprivations on these gene expressions. At the same time, the expression of the SHMT1 gene, which is responsible for serine conversion to glycine, was down-regulated in both nutrient deprivation conditions with more significant changes in ERN1 knockdown glioblastoma cells. Conclusion. Taken together, the results of present study indicate that the expression of genes responsible for serine synthesis is sensitive to glucose and glutamine deprivations in gene-specific manner and that suppression of ERN1 signaling significantly modifies the impact of both glucose and glutamine deprivations on PHGDH, PSAT1, PSPH, ATF4, and SHMT1 gene expressions and reflects the ERN1-mediated genome reprograming introduced by nutrient deprivation condition.


Endoribonucleases , Gene Expression Regulation, Neoplastic , Glioblastoma , Glucose , Glutamine , Phosphoglycerate Dehydrogenase , Phosphoric Monoester Hydrolases , Protein Serine-Threonine Kinases , Serine , Transaminases , Humans , Activating Transcription Factor 4/genetics , Activating Transcription Factor 4/metabolism , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Cell Line, Tumor , Endoplasmic Reticulum Stress/genetics , Endoplasmic Reticulum Stress/drug effects , Endoribonucleases/genetics , Endoribonucleases/metabolism , Gene Knockdown Techniques , Glioblastoma/genetics , Glioblastoma/metabolism , Glucose/metabolism , Glutamine/metabolism , Glycine Hydroxymethyltransferase/genetics , Glycine Hydroxymethyltransferase/metabolism , Phosphoglycerate Dehydrogenase/genetics , Phosphoglycerate Dehydrogenase/metabolism , Phosphoric Monoester Hydrolases/genetics , Phosphoric Monoester Hydrolases/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Serine/metabolism , Serine/biosynthesis , Signal Transduction
6.
Mol Biol Rep ; 51(1): 578, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38668789

Mg2+-independent phosphatidic acid phosphatase (PAP2), diacylglycerol pyrophosphate phosphatase 1 (Dpp1) is a membrane-associated enzyme in Saccharomyces cerevisiae. The enzyme is responsible for inducing the breakdown of ß-phosphate from diacylglycerol pyrophosphate (DGPP) into phosphatidate (PA) and then removes the phosphate from PA to give diacylglycerol (DAG). In this study through RNAi suppression, we have demonstrated that Trypanosoma brucei diacylglycerol pyrophosphate phosphatase 1 (TbDpp1) procyclic form production is not required for parasite survival in culture. The steady-state levels of triacylglycerol (TAG), the number of lipid droplets, and the PA content are all maintained constant through the inducible down-regulation of TbDpp1. Furthermore, the localization of C-terminally tagged variants of TbDpp1 in the lysosome was demonstrated by immunofluorescence microscopy.


Glycerol/analogs & derivatives , Lysosomes , Trypanosoma brucei brucei , Trypanosoma brucei brucei/enzymology , Trypanosoma brucei brucei/genetics , Lysosomes/metabolism , Lysosomes/enzymology , Triglycerides/metabolism , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , Phosphatidate Phosphatase/metabolism , Phosphatidate Phosphatase/genetics , RNA Interference , Diphosphates/metabolism , Phosphoric Monoester Hydrolases/metabolism , Phosphoric Monoester Hydrolases/genetics , Diglycerides/metabolism , Phosphatidic Acids/metabolism
7.
Sci Rep ; 14(1): 9117, 2024 04 20.
Article En | MEDLINE | ID: mdl-38643232

Milk protein content is an important index to evaluate the quality and nutrition of milk. Accumulating evidence suggests that microRNAs (miRNAs) play important roles in bovine lactation, but little is known regarding the cross-kingdom regulatory roles of plant-derived exogenous miRNAs (xeno-miRNAs) in milk protein synthesis, particularly the underlying molecular mechanisms. The purpose of this study was to explore the regulatory mechanism of alfalfa-derived xeno-miRNAs on proliferation and milk protein synthesis in bovine mammary epithelial cells (BMECs). Our previous study showed that alfalfa miR159a (mtr-miR159a, xeno-miR159a) was highly expressed in alfalfa, and the abundance of mtr-miR159a was significantly lower in serum and whey from high-protein-milk dairy cows compared with low-protein-milk dairy cows. In this study, mRNA expression was detected by real-time quantitative PCR (qRT-PCR), and casein content was evaluated by enzyme-linked immunosorbent assay (ELISA). Cell proliferation and apoptosis were detected using the cell counting kit 8 (CCK-8) assay, 5-ethynyl-2'-deoxyuridine (EdU) staining, western blot, and flow cytometry. A dual-luciferase reporter assay was used to determine the regulation of Protein Tyrosine Phosphatase Receptor Type F (PTPRF) by xeno-miR159a. We found that xeno-miR159a overexpression inhibited proliferation of BMEC and promoted cell apoptosis. Besides, xeno-miR159a overexpression decreased ß-casein abundance, and increased α-casein and κ-casein abundance in BMECs. Dual-luciferase reporter assay result confirmed that PTPRF is a target gene of xeno-miR159a. These results provide new insights into the mechanism by which alfalfa-derived miRNAs regulate BMECs proliferation and milk protein synthesis.


MicroRNAs , Milk Proteins , Female , Cattle , Animals , Milk Proteins/metabolism , Medicago sativa/genetics , Medicago sativa/metabolism , Phosphoric Monoester Hydrolases/metabolism , Mammary Glands, Animal/metabolism , Caseins/genetics , Caseins/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Cell Proliferation , Luciferases/metabolism , Epithelial Cells/metabolism
8.
Proc Natl Acad Sci U S A ; 121(16): e2311390121, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38593075

Many organisms that utilize the Calvin-Benson-Bassham (CBB) cycle for autotrophic growth harbor metabolic pathways to remove and/or salvage 2-phosphoglycolate, the product of the oxygenase activity of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). It has been presumed that the occurrence of 2-phosphoglycolate salvage is linked to the CBB cycle, and in particular, the C2 pathway to the CBB cycle and oxygenic photosynthesis. Here, we examined 2-phosphoglycolate salvage in the hyperthermophilic archaeon Thermococcus kodakarensis, an obligate anaerobe that harbors a Rubisco that functions in the pentose bisphosphate pathway. T. kodakarensis harbors enzymes that have the potential to convert 2-phosphoglycolate to glycine and serine, and their genes were identified by biochemical and/or genetic analyses. 2-phosphoglycolate phosphatase activity increased 1.6-fold when cells were grown under microaerobic conditions compared to anaerobic conditions. Among two candidates, TK1734 encoded a phosphatase specific for 2-phosphoglycolate, and the enzyme was responsible for 80% of the 2-phosphoglycolate phosphatase activity in T. kodakarensis cells. The TK1734 disruption strain displayed growth impairment under microaerobic conditions, which was relieved upon addition of sodium sulfide. In addition, glycolate was detected in the medium when T. kodakarensis was grown under microaerobic conditions. The results suggest that T. kodakarensis removes 2-phosphoglycolate via a phosphatase reaction followed by secretion of glycolate to the medium. As the Rubisco in T. kodakarensis functions in the pentose bisphosphate pathway and not in the CBB cycle, mechanisms to remove 2-phosphoglycolate in this archaeon emerged independent of the CBB cycle.


Archaea , Ribulose-Bisphosphate Carboxylase , Ribulose-Bisphosphate Carboxylase/genetics , Ribulose-Bisphosphate Carboxylase/metabolism , Archaea/metabolism , Photosynthesis , Glycolates/metabolism , Phosphoric Monoester Hydrolases/metabolism , Oxygenases/metabolism , Pentoses
9.
Elife ; 122024 Apr 04.
Article En | MEDLINE | ID: mdl-38573813

Metabolic pathways are plastic and rapidly change in response to stress or perturbation. Current metabolic profiling techniques require lysis of many cells, complicating the tracking of metabolic changes over time after stress in rare cells such as hematopoietic stem cells (HSCs). Here, we aimed to identify the key metabolic enzymes that define differences in glycolytic metabolism between steady-state and stress conditions in murine HSCs and elucidate their regulatory mechanisms. Through quantitative 13C metabolic flux analysis of glucose metabolism using high-sensitivity glucose tracing and mathematical modeling, we found that HSCs activate the glycolytic rate-limiting enzyme phosphofructokinase (PFK) during proliferation and oxidative phosphorylation (OXPHOS) inhibition. Real-time measurement of ATP levels in single HSCs demonstrated that proliferative stress or OXPHOS inhibition led to accelerated glycolysis via increased activity of PFKFB3, the enzyme regulating an allosteric PFK activator, within seconds to meet ATP requirements. Furthermore, varying stresses differentially activated PFKFB3 via PRMT1-dependent methylation during proliferative stress and via AMPK-dependent phosphorylation during OXPHOS inhibition. Overexpression of Pfkfb3 induced HSC proliferation and promoted differentiated cell production, whereas inhibition or loss of Pfkfb3 suppressed them. This study reveals the flexible and multilayered regulation of HSC glycolytic metabolism to sustain hematopoiesis under stress and provides techniques to better understand the physiological metabolism of rare hematopoietic cells.


Glycolysis , Phosphofructokinase-2 , Animals , Mice , Adenosine Triphosphate/metabolism , Anaerobiosis , Hematopoiesis , Hematopoietic Stem Cells/metabolism , Oxidative Phosphorylation , Phosphofructokinase-2/genetics , Phosphofructokinase-2/metabolism , Phosphoric Monoester Hydrolases/metabolism
10.
J Biomed Sci ; 31(1): 34, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38561844

BACKGROUND: It is generally believed that hepatitis B virus (HBV) core protein (HBc) dephosphorylation (de-P) is important for viral DNA synthesis and virion secretion. HBV polymerase contains four domains for terminal protein, spacer, reverse transcriptase, and RNase H activities. METHODS: HBV Polymerase mutants were transfected into HuH-7 cells and assayed for replication and HBc de-P by the Phos-tag gel analysis. Infection assay was performed by using a HepG2-NTCP-AS2 cell line. RESULTS: Here, we show that a novel phosphatase activity responsible for HBc de-P can be mapped to the C-terminal domain of the polymerase overlapping with the RNase H domain. Surprisingly, while HBc de-P is crucial for viral infectivity, it is essential for neither viral DNA synthesis nor virion secretion. The potential origin, significance, and mechanism of this polymerase-associated phosphatase activity are discussed in the context of an electrostatic homeostasis model. The Phos-tag gel analysis revealed an intriguing pattern of "bipolar distribution" of phosphorylated HBc and a de-P HBc doublet. CONCLUSIONS: It remains unknown if such a polymerase-associated phosphatase activity can be found in other related biosystems. This polymerase-associated phosphatase activity could be a druggable target in clinical therapy for hepatitis B.


Capsid , Hepatitis B virus , Hepatitis B virus/genetics , Capsid/metabolism , Virus Assembly/genetics , DNA, Viral , RNA, Viral/metabolism , Capsid Proteins/metabolism , Virus Replication/genetics , Ribonuclease H/metabolism , Phosphoric Monoester Hydrolases/metabolism
11.
Anal Chem ; 96(17): 6540-6549, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38619937

Composite materials built in part from living organisms have the potential to exhibit useful autonomous, adaptive, and self-healing behavior. The physicochemical, biological, and mechanical properties of such materials can be engineered through the genetic manipulation of their living components. Successful development of living materials will require not only new methods for design and preparation but also new analytical tools that are capable of real-time noninvasive mapping of chemical compositions. Here, we establish a strategy based on stimulated Raman scattering microscopy to monitor phosphatase-catalyzed mineralization of engineered bacterial films in situ. Real-time label-free imaging elucidates the mineralization process, quantifies both the organic and inorganic components of the material as functions of time, and reveals spatial heterogeneity at multiple scales. In addition, we correlate the mechanical performance of films with the extent of mineralization. This work introduces a promising strategy for quantitatively analyzing living materials, which should contribute to the accelerated development of such materials in the future.


Nonlinear Optical Microscopy , Nonlinear Optical Microscopy/methods , Spectrum Analysis, Raman/methods , Time Factors , Phosphoric Monoester Hydrolases/metabolism
12.
Proc Natl Acad Sci U S A ; 121(17): e2318943121, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38635628

Synaptojanin-1 (SJ1) is a major neuronal-enriched PI(4, 5)P2 4- and 5-phosphatase implicated in the shedding of endocytic factors during endocytosis. A mutation (R258Q) that impairs selectively its 4-phosphatase activity causes Parkinsonism in humans and neurological defects in mice (SJ1RQKI mice). Studies of these mice showed, besides an abnormal assembly state of endocytic factors at synapses, the presence of dystrophic nerve terminals selectively in a subset of nigro-striatal dopamine (DA)-ergic axons, suggesting a special lability of DA neurons to the impairment of SJ1 function. Here we have further investigated the impact of SJ1 on DA neurons using iPSC-derived SJ1 KO and SJ1RQKI DA neurons and their isogenic controls. In addition to the expected enhanced clustering of endocytic factors in nerve terminals, we observed in both SJ1 mutant neuronal lines increased cilia length. Further analysis of cilia of SJ1RQDA neurons revealed abnormal accumulation of the Ca2+ channel Cav1.3 and of ubiquitin chains, suggesting a defect in the clearing of ubiquitinated proteins at the ciliary base, where a focal concentration of SJ1 was observed. We suggest that SJ1 may contribute to the control of ciliary protein dynamics in DA neurons, with implications on cilia-mediated signaling.


Induced Pluripotent Stem Cells , Nerve Tissue Proteins , Parkinson Disease , Parkinsonian Disorders , Humans , Mice , Animals , Parkinson Disease/metabolism , Dopaminergic Neurons/metabolism , Induced Pluripotent Stem Cells/metabolism , Parkinsonian Disorders/genetics , Parkinsonian Disorders/metabolism , Phosphoric Monoester Hydrolases/genetics , Phosphoric Monoester Hydrolases/metabolism , Mutation
13.
Am J Physiol Regul Integr Comp Physiol ; 326(6): R461-R471, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38557151

Nutrient absorption is essential for animal survival and development. Our previous study on zebrafish reported that nutrient absorption in lysosome-rich enterocytes (LREs) is promoted by the voltage-sensing phosphatase (VSP), which regulates phosphoinositide (PIP) homeostasis via electrical signaling in biological membranes. However, it remains unknown whether this VSP function is shared by different absorptive tissues in other species. Here, we focused on the function of VSP in a viviparous teleost Xenotoca eiseni, whose intraovarian embryos absorb nutrients from the maternal ovarian fluid through a specialized hindgut-derived pseudoplacental structure called trophotaenia. Xenotoca eiseni VSP (Xe-VSP) is expressed in trophotaenia epithelium, an absorptive tissue functionally similar to zebrafish LREs. Notably, the apical distribution of Xe-VSP in trophotaenia epithelial cells closely resembles zebrafish VSP (Dr-VSP) distribution in zebrafish LREs, suggesting a shared role for VSP in absorptive tissues between the two species. Electrophysiological analysis using a heterologous expression system revealed that Xe-VSP preserves functional voltage sensors and phosphatase activity with the leftward shifted voltage sensitivity compared with zebrafish VSP (Dr-VSP). We also identified a single amino acid variation in the S4 helix of Xe-VSP as one of the factors contributing to the leftward shifted voltage sensitivity. This study highlights the biological variation and significance of VSP in various animal species, as well as hinting at the potential role of VSP in nutrient absorption in X. eiseni trophotaenia.NEW & NOTEWORTHY We investigate the voltage-sensing phosphatase (VSP) in Xenotoca eiseni, a viviparous fish whose intraovarian embryos utilize trophotaenia for nutrient absorption. Although X. eiseni VSP (Xe-VSP) shares key features with known VSPs, its distinct voltage sensitivity arises from species-specific amino acid variation. Xe-VSP in trophotaenia epithelium suggests its involvement in nutrient absorption, similar to VSP in zebrafish enterocytes and potentially in species with similar absorptive cells. Our findings highlight the potential role of VSP across species.


Phosphoric Monoester Hydrolases , Viviparity, Nonmammalian , Animals , Female , Phosphoric Monoester Hydrolases/metabolism , Phosphoric Monoester Hydrolases/genetics , Fish Proteins/metabolism , Fish Proteins/genetics , Enterocytes/metabolism , Enterocytes/enzymology , Electric Fish/physiology , Electric Fish/metabolism , Zebrafish , Membrane Potentials
14.
Acta Physiol (Oxf) ; 240(5): e14137, 2024 May.
Article En | MEDLINE | ID: mdl-38502065

BACKGROUND: Voltage-sensing phosphatase contains a structurally conserved S1-S4-based voltage-sensor domain, which undergoes a conformational transition in response to membrane potential change. Unlike that of channels, it is functional even in isolation and is therefore advantageous for studying the transition mechanism, but its nature has not yet been fully elucidated. This study aimed to address whether the cytoplasmic N-terminus and S1 exhibit structural change. METHODS: Anap, an environment-sensitive unnatural fluorescent amino acid, was site-specifically introduced to the voltage sensor domain to probe local structural changes by using oocyte voltage clamp and photometry. Tetramethylrhodamine was also used to probe some extracellularly accessible positions. In total, 51 positions were investigated. RESULTS: We detected robust voltage-dependent signals from widely distributed positions including N-terminus and S1. In addition, response to hyperpolarization was observed at the extracellular end of S1, reflecting the local structure flexibility of the voltage-sensor domain in the down-state. We also found that the mechanical coupling between the voltage-sensor and phosphatase domains affects the depolarization-induced optical signals but not the hyperpolarization-induced signals. CONCLUSIONS: These results fill a gap between the previous interpretations from the structural and biophysical approaches and should provide important insights into the mechanisms of the voltage-sensor domain transition as well as its coupling with the effector.


Membrane Potentials , Animals , Membrane Potentials/physiology , Oocytes/metabolism , Phosphoric Monoester Hydrolases/metabolism , Phosphoric Monoester Hydrolases/chemistry , Phosphoric Monoester Hydrolases/genetics , Cytoplasm/metabolism , Xenopus laevis , Protein Domains , Patch-Clamp Techniques
15.
Enzyme Microb Technol ; 177: 110427, 2024 Jun.
Article En | MEDLINE | ID: mdl-38518553

d-mannose has been widely used in food, medicine, cosmetic, and food-additive industries. To date, chemical synthesis or enzymatic conversion approaches based on iso/epimerization reactions for d-mannose production suffered from low conversion rate due to the reaction equilibrium, necessitating intricate separation processes for obtaining pure products on an industrial scale. To circumvent this challenge, this study showcased a new approach for d-mannose synthesis from glucose through constructing a phosphorylation-dephosphorylation pathway in an engineered strain. Specifically, the gene encoding phosphofructokinase (PfkA) in glycolytic pathway was deleted in Escherichia coli to accumulate fructose-6-phosphate (F6P). Additionally, one endogenous phosphatase, YniC, with high specificity to mannose-6-phosphate, was identified. In ΔpfkA strain, a recombinant synthetic pathway based on mannose-6-phosphate isomerase and YniC was developed to direct F6P to mannose. The resulting strain successfully produced 25.2 g/L mannose from glucose with a high conversion rate of 63% after transformation for 48 h. This performance surpassed the 15% conversion rate observed with 2-epimerases. In conclusion, this study presents an efficient method for achieving high-yield mannose synthesis from cost-effective glucose.


Escherichia coli , Glucose , Mannose , Mannose/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Phosphorylation , Glucose/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , Mannosephosphates/metabolism , Metabolic Engineering , Fructosephosphates/metabolism , Mannose-6-Phosphate Isomerase/metabolism , Mannose-6-Phosphate Isomerase/genetics , Phosphoric Monoester Hydrolases/metabolism , Phosphoric Monoester Hydrolases/genetics , Glycolysis
16.
Physiol Int ; 111(1): 97-123, 2024 Mar 21.
Article En | MEDLINE | ID: mdl-38436684

The aim of this study is to show the relationship between the change in the strengthening of synaptic plasticity and tau phosphorylation and tau-kinases and phosphatase. The averages of the field excitatory-postsynaptic potential (fEPSP) and population spike (PS) in the last 5 min were used as a measure of LTP, LTD and MP. Total and phosphorylated levels of tau, kinases and phosphatases were evaluated by western blot and mRNA levels were evaluated by RT-qPCR. The stimulation of synapses by HFS and LFS+HFS increased the phosphorylation of total-tau and phospho-tau at the Thr181, Ser202/Thr205, Ser396 and Ser416 residues, and these were accompanied by increased enzymatic activity of Akt, ERK1/2. The increased phosphorylation of tau may mediate maintenance of LTP. If the increase in phosphorylation of tau cannot be prevented, together with inhibition of the subsequent LTP, this may indicate that the physiological role of hyperphosphorylated tau in synaptic plasticity may extend to pathological processes.


Neuronal Plasticity , Phosphoric Monoester Hydrolases , tau Proteins , Neuronal Plasticity/physiology , Phosphoric Monoester Hydrolases/metabolism , Phosphorylation , tau Proteins/metabolism , Male , Animals , Rats , Rats, Wistar
17.
Redox Biol ; 71: 103097, 2024 May.
Article En | MEDLINE | ID: mdl-38442648

Phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] is implicated in various processes, including hormone-induced signal transduction, endocytosis, and exocytosis in the plasma membrane. However, how H2O2 accumulation regulates the levels of PtdIns(4,5)P2 in the plasma membrane in cells stimulated with epidermal growth factors (EGFs) is not known. We show that a plasma membrane PtdIns(4,5)P2-degrading enzyme, synaptojanin (Synj) phosphatase, is inactivated through oxidation by H2O2. Intriguingly, H2O2 inhibits the 4-phosphatase activity of Synj but not the 5-phosphatase activity. In EGF-activated cells, the oxidation of Synj dual phosphatase is required for the transient increase in the plasma membrane levels of phosphatidylinositol 4-phosphate [PtdIns(4)P], which can control EGF receptor-mediated endocytosis. These results indicate that intracellular H2O2 molecules act as signaling mediators to fine-tune endocytosis by controlling the stability of plasma membrane PtdIns(4)P, an intermediate product of Synj phosphoinositide dual phosphatase.


Hydrogen Peroxide , Nerve Tissue Proteins , Phosphatidylinositols , Hydrogen Peroxide/metabolism , Phosphatidylinositol 4,5-Diphosphate/metabolism , Phosphoric Monoester Hydrolases/metabolism , Cell Membrane/metabolism , Signal Transduction , Endocytosis
18.
Curr Biol ; 34(7): 1390-1402.e4, 2024 Apr 08.
Article En | MEDLINE | ID: mdl-38428416

Collective cell migration is integral to many developmental and disease processes. Previously, we discovered that protein phosphatase 1 (Pp1) promotes border cell collective migration in the Drosophila ovary. We now report that the Pp1 phosphatase regulatory subunit dPPP1R15 is a critical regulator of border cell migration. dPPP1R15 is an ortholog of mammalian PPP1R15 proteins that attenuate the endoplasmic reticulum (ER) stress response. We show that, in collectively migrating border cells, dPPP1R15 phosphatase restrains an active physiological protein kinase R-like ER kinase- (PERK)-eIF2α-activating transcription factor 4 (ATF4) stress pathway. RNAi knockdown of dPPP1R15 blocks border cell delamination from the epithelium and subsequent migration, increases eIF2α phosphorylation, reduces translation, and drives expression of the stress response transcription factor ATF4. We observe similar defects upon overexpression of ATF4 or the eIF2α kinase PERK. Furthermore, we show that normal border cells express markers of the PERK-dependent ER stress response and require PERK and ATF4 for efficient migration. In many other cell types, unresolved ER stress induces initiation of apoptosis. In contrast, border cells with chronic RNAi knockdown of dPPP1R15 survive. Together, our results demonstrate that the PERK-eIF2α-ATF4 pathway, regulated by dPPP1R15 activity, counteracts the physiological ER stress that occurs during collective border cell migration. We propose that in vivo collective cell migration is intrinsically "stressful," requiring tight homeostatic control of the ER stress response for collective cell cohesion, dynamics, and movement.


Signal Transduction , eIF-2 Kinase , Animals , eIF-2 Kinase/genetics , eIF-2 Kinase/metabolism , Endoplasmic Reticulum Stress/physiology , Apoptosis , Cell Movement , Phosphoric Monoester Hydrolases/metabolism , Eukaryotic Initiation Factor-2/genetics , Eukaryotic Initiation Factor-2/metabolism , Mammals
19.
Proc Natl Acad Sci U S A ; 121(12): e2312290121, 2024 Mar 19.
Article En | MEDLINE | ID: mdl-38483999

Human cytomegalovirus (HCMV) infection of monocytes is essential for viral dissemination and persistence. We previously identified that HCMV entry/internalization and subsequent productive infection of this clinically relevant cell type is distinct when compared to other infected cells. We showed that internalization and productive infection required activation of epidermal growth factor receptor (EGFR) and integrin/c-Src, via binding of viral glycoprotein B to EGFR, and the pentamer complex to ß1/ß3 integrins. To understand how virus attachment drives entry, we compared infection of monocytes with viruses containing the pentamer vs. those without the pentamer and then used a phosphoproteomic screen to identify potential phosphorylated proteins that influence HCMV entry and trafficking. The screen revealed that the most prominent pentamer-biased phosphorylated protein was the lipid- and protein-phosphatase phosphatase and tensin homolog (PTEN). PTEN knockdown with siRNA or PTEN inhibition with a PTEN inhibitor decreased pentamer-mediated HCMV entry, without affecting trimer-mediated entry. Inhibition of PTEN activity affected lipid metabolism and interfered with the onset of the endocytic processes required for HCMV entry. PTEN inactivation was sufficient to rescue pentamer-null HCMV from lysosomal degradation. We next examined dephosphorylation of a PTEN substrate Rab7, a regulator of endosomal maturation. Inhibition of PTEN activity prevented dephosphorylation of Rab7. Phosphorylated Rab7, in turn, blocked early endosome to late endosome maturation and promoted nuclear localization of the virus and productive infection.


Monocytes , Virus Internalization , Humans , Cells, Cultured , Monocytes/metabolism , Cytomegalovirus/physiology , ErbB Receptors/metabolism , Phosphoric Monoester Hydrolases/metabolism , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/metabolism
20.
Molecules ; 29(5)2024 Feb 27.
Article En | MEDLINE | ID: mdl-38474536

The lipid phosphatase Ship2 interacts with the EphA2 receptor by forming a heterotypic Sam (sterile alpha motif)-Sam complex. Ship2 works as a negative regulator of receptor endocytosis and consequent degradation, and anti-oncogenic effects in cancer cells should be induced by hindering its association with EphA2. Herein, a computational approach is presented to investigate the relationship between Ship2-Sam/EphA2-Sam interaction and cancer onset and further progression. A search was first conducted through the COSMIC (Catalogue of Somatic Mutations in Cancer) database to identify cancer-related missense mutations positioned inside or close to the EphA2-Sam and Ship2-Sam reciprocal binding interfaces. Next, potential differences in the chemical-physical properties of mutant and wild-type Sam domains were evaluated by bioinformatics tools based on analyses of primary sequences. Three-dimensional (3D) structural models of mutated EphA2-Sam and Ship2-Sam domains were built as well and deeply analysed with diverse computational instruments, including molecular dynamics, to classify potentially stabilizing and destabilizing mutations. In the end, the influence of mutations on the EphA2-Sam/Ship2-Sam interaction was studied through docking techniques. This in silico approach contributes to understanding, at the molecular level, the mutation/cancer relationship by predicting if amino acid substitutions could modulate EphA2 receptor endocytosis.


Neoplasms , Receptor, EphA2 , Sterile Alpha Motif , Receptor, EphA2/chemistry , Protein Binding , Mutation , Phosphoric Monoester Hydrolases/metabolism , Lipids
...